Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Laser ablation is a process that bears both fundamental physics interest and has wide industrial applications. For decades, the lack of probes on the relevant time and length scales has prevented access to the highly nonequilibrium phase decomposition processes triggered by laser excitation. In this study, a close integration of time-resolved probing by intense femtosecond X-ray pulses with large-scale atomistic modeling has yielded unique insights into the ablation dynamics of thin gold films irradiated by femtosecond laser pulses. The emergence and growth of nanoscale density heterogeneities in the expanding ablation plume, predicted in the simulations, are mapped to the rapid evolution of distinct small angle diffraction features. This mapping enables identification of the characteristic signatures of different phase decomposition processes occurring simultaneously in the plume, which are driven by photomechanical and thermodynamic driving forces. Beyond the specific insights into the ablation phenomenon, this study demonstrates the power of joint X-ray probing and atomistic modeling of material dynamics under extreme conditions of thermal and mechanical nonequilibrium.more » « lessFree, publicly-accessible full text available December 1, 2026
-
We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C–S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.more » « less
An official website of the United States government
